Understanding how lipopolysaccharide impacts CD4 T cell immunity (2024)

1. Dresser DW. Elimination of 131-I-labelled protein antigens from the circulation of the mouse. Immunology. 1960 Oct;3:289–295. [PMC free article] [PubMed] [Google Scholar]

2. Dresser DW. Effectiveness of lipid and lipidophilic substances as adjuvants. Nature. 1961 Sep 16;191:1169–1171. [PubMed] [Google Scholar]

3. Beutler B, Rietschel ET. Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol. 2003 Feb;3(2):169–176. [PubMed] [Google Scholar]

4. Landy M, Johnson AG, Webster ME, Sagin JF. Studies on the O antigen of Salmonella typhosa. II. Immunological properties of the purified antigen. J Immunol. 1955 Jun;74(6):466–478. [PubMed] [Google Scholar]

5. Landy M, Pillemer L. Increased resistance to infection and accompanying alteration in properidin levels following administration of bacterial lipopolysaccharides. J Exp Med. 1956 Sep 1;104(3):383–409. [PMC free article] [PubMed] [Google Scholar]

6. Brooke MS. Conversion of immunological paralysis to immunity by endotoxin. Nature. 1965 May 8;206(984):635–636. [PubMed] [Google Scholar]

7. Palsson-McDermott EM, O'Neill LA. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology. 2004 Oct;113(2):153–162. [PMC free article] [PubMed] [Google Scholar]

8. Haziot A, Ferrero E, Kontgen F, Hijiya N, Yamamoto S, Silver J, Stewart CL, Goyert SM. Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity. 1996 Apr;4(4):407–414. [PubMed] [Google Scholar]

9. Viriyakosol S, Tobias PS, Kitchens RL, Kirkland TN. MD-2 binds to bacterial lipopolysaccharide. J Biol Chem. 2001 Oct 12;276(41):38044–38051. [PubMed] [Google Scholar]

10. Shimazu R, Akashi S, Ogata H, Nagai Y, f*ckudome K, Miyake K, Kimoto M. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med. 1999 Jun 7;189(11):1777–1782. [PMC free article] [PubMed] [Google Scholar]

11. Ogata H, Su I, Miyake K, Nagai Y, Akashi S, Mecklenbrauker I, Rajewsky K, Kimoto M, Tarakhovsky A. The toll-like receptor protein RP105 regulates lipopolysaccharide signaling in B cells. J Exp Med. 2000 Jul 3;192(1):23–29. [PMC free article] [PubMed] [Google Scholar]

12. Nagai Y, Shimazu R, Ogata H, Akashi S, Sudo K, Yamasaki H, Hayashi S, Iwakura Y, Kimoto M, Miyake K. Requirement for MD-1 in cell surface expression of RP105/CD180 and B-cell responsiveness to lipopolysaccharide. Blood. 2002 Mar 1;99(5):1699–1705. [PubMed] [Google Scholar]

13. Hornef MW, Normark BH, Vandewalle A, Normark S. Intracellular recognition of lipopolysaccharide by toll-like receptor 4 in intestinal epithelial cells. J Exp Med. 2003 Oct 20;198(8):1225–1235. [PMC free article] [PubMed] [Google Scholar]

14. Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006 May;13(5):816–825. [PubMed] [Google Scholar]

15. Kagan JC, Medzhitov R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell. 2006 Jun 2;125(5):943–955. [PubMed] [Google Scholar]

16. Hoebe K, Janssen EM, Kim SO, Alexopoulou L, Flavell RA, Han J, Beutler B. Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nat Immunol. 2003 Dec;4(12):1223–1229. [PubMed] [Google Scholar]

17. Kamon H, Kawabe T, Kitamura H, Lee J, Kamimura D, Kaisho T, Akira S, Iwamatsu A, Koga H, Murakami M, Hirano T. TRIF-GEFH1-RhoB pathway is involved in MHCII expression on dendritic cells that is critical for CD4 T-cell activation. Embo J. 2006 Sep 6;25(17):4108–4119. [PMC free article] [PubMed] [Google Scholar]

18. Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, Kim SO, Goode J, Lin P, Mann N, Mudd S, Crozat K, Sovath S, Han J, Beutler B. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature. 2003 Aug 14;424(6950):743–748. [PubMed] [Google Scholar]

19. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003 Aug 1;301(5633):640–643. [PubMed] [Google Scholar]

20. Kawai T, Akira S. TLR signaling. Semin Immunol. 2007 Feb;19(1):24–32. [PubMed] [Google Scholar]

21. Blank C, Luz A, Bendigs S, Erdmann A, Wagner H, Heeg K. Superantigen and endotoxin synergize in the induction of lethal shock. Eur J Immunol. 1997 Apr;27(4):825–833. [PubMed] [Google Scholar]

22. Condie RM, Zak SJ, Good RA. Effect of meningococcal endotoxin on the immune response. Proc Soc Exp Biol Med. 1955 Nov;90(2):355–360. [PubMed] [Google Scholar]

23. Johnson AG, Gaines S, Landy M. Studies on the O antigen of Salmonella typhosa. V. Enhancement of antibody response to protein antigens by the purified lipopolysaccharide. J Exp Med. 1956 Feb 1;103(2):225–246. [PMC free article] [PubMed] [Google Scholar]

24. Claman HN. Tolerance To A Protein Antigen In Adult Mice And The Effect Of Nonspecific Factors. J Immunol. 1963 Dec;91:833–839. [PubMed] [Google Scholar]

25. Perini A, Mota I. The production of IgE and IgG1 antibodies in guinea-pigs immunized with antigen and bacterial lipopolysaccharides. Immunology. 1973 Aug;25(2):297–305. [PMC free article] [PubMed] [Google Scholar]

26. Jones JM, Kind PD. Enhancing effect of bacterial endotoxins on bone marrow cells in the immune response to SRBC. J Immunol. 1972 May;108(5):1453–1455. [PubMed] [Google Scholar]

27. Sjoberg O, Andersson J, Moller G. Lipopolysaccharide can substitute for helper cells in the antibody response in vitro. Eur J Immunol. 1972 Aug;2(4):326–331. [PubMed] [Google Scholar]

28. Andersson J, Melchers F, Galanos C, Luderitz O. The mitogenic effect of lipopolysaccharide on bone marrow-derived mouse lymphocytes. Lipid A as the mitogenic part of the molecule. J Exp Med. 1973 Apr 1;137(4):943–953. [PMC free article] [PubMed] [Google Scholar]

29. Chiller JM, Weigle WO. Termination of tolerance to human gamma globulin in mice by antigen and bacterial lipopolysaccharide (endotoxin) J Exp Med. 1973 Mar 1;137(3):740–750. [PMC free article] [PubMed] [Google Scholar]

30. Allison AC, Davies AJ. Requirement of thymus-dependent lymphocytes for potentiation by adjuvants of antibody formation. Nature. 1971 Oct 1;233(5318):330–332. [PubMed] [Google Scholar]

31. Hamaoka T, Katz DH. Cellular site of action of various adjuvants in antibody responses to hapten-carrier conjugates. J Immunol. 1973 Nov;111(5):1554–1563. [PubMed] [Google Scholar]

32. Armerding D, Katz DH. Activation of T and B lymphocytes in vitro. I. Regulatory influence of bacterial lipopolysaccharide (LPS) on specific T-cell helper function. J Exp Med. 1974 Jan 1;139(1):24–43. [PMC free article] [PubMed] [Google Scholar]

33. Waldmann H, Munro A. The inter-relationship of antigenic structure, thymus-independence and adjuvanticity. IV. A general model for B-cell induction. Immunology. 1975 Mar;28(3):509–522. [PMC free article] [PubMed] [Google Scholar]

34. Danneman PJ, Michael JG. Adjuvant and immunogenic properties of bacterial lipopolysaccharide in IgE and IgG antibody formation in mice. Cell Immunol. 1976 Mar 1;22(1):128–139. [PubMed] [Google Scholar]

35. Ness DB, Smith S, Talcott JA, Grumet FC. T cell requirements for the expression of the lipopolysaccharide adjuvant effect in vivo: evidence for a T cell-dependent and a T cell-independent mode of action. Eur J Immunol. 1976 Sep;6(9):650–654. [PubMed] [Google Scholar]

36. Shinohara N, Kern M. Differentiation of lymphoid cells: B cell as a direct target and T cell as a regulator in lipopolysaccharide-enhanced induction of immunoglobulin production. J Immunol. 1976 Jun;116(6):1607–1612. [PubMed] [Google Scholar]

37. Rubtsov AV, Swanson CL, Troy S, Strauch P, Pelanda R, Torres RM. TLR Agonists Promote Marginal Zone B Cell Activation and Facilitate T-Dependent IgM Responses. J Immunol. 2008 Mar 15;180(6):3882–3888. [PubMed] [Google Scholar]

38. Braley-Mullen H, Johnson M, Sharp GC, Kyriakos M. Induction of experimental autoimmune thyroiditis in mice with in vitro activated splenic T cells. Cell Immunol. 1985 Jun;93(1):132–143. [PubMed] [Google Scholar]

39. Parks DE, Walker SM, Weigle WO. Bacterial lipopolysaccharide (endotoxin) interferes with the induction of tolerance and primes thymus-derived lymphocytes. J Immunol. 1981 Mar;126(3):938–942. [PubMed] [Google Scholar]

40. Vogel SN, Hilfiker ML, Caulfield MJ. Endotoxin-induced T lymphocyte proliferation. J Immunol. 1983 Apr;130(4):1774–1779. [PubMed] [Google Scholar]

41. Bismuth G, Duphot M, Theze J. LPS and specific T cell responses: interleukin 1 (IL 1)-independent amplification of antigen-specific T helper (TH) cell proliferation. J Immunol. 1985 Mar;134(3):1415–1421. [PubMed] [Google Scholar]

42. Mattern T, Thanhauser A, Reiling N, Toellner KM, Duchrow M, Kusumoto S, Rietschel ET, Ernst M, Brade H, Flad HD, et al. Endotoxin and lipid A stimulate proliferation of human T cells in the presence of autologous monocytes. J Immunol. 1994 Oct 1;153(7):2996–3004. [PubMed] [Google Scholar]

43. Tough DF, Sun S, Sprent J. T cell stimulation in vivo by lipopolysaccharide (LPS) J Exp Med. 1997 Jun 16;185(12):2089–2094. [PMC free article] [PubMed] [Google Scholar]

44. Castro A, Bemer V, Nobrega A, Coutinho A, Truffa-Bachi P. Administration to mouse of endotoxin from gram-negative bacteria leads to activation and apoptosis of T lymphocytes. Eur J Immunol. 1998 Feb;28(2):488–495. [PubMed] [Google Scholar]

45. Balasa B, Van Gunst K, Sarvetnick N. The microbial product lipopolysaccharide confers diabetogenic potential on the T cell repertoire of BDC2.5/NOD mice: implications for the etiology of autoimmune diabetes. Clin Immunol. 2000 May;95(2):93–98. [PubMed] [Google Scholar]

46. Nogai A, Siffrin V, Bonhagen K, Pfueller CF, Hohnstein T, Volkmer-Engert R, Bruck W, Stadelmann C, Kamradt T. Lipopolysaccharide injection induces relapses of experimental autoimmune encephalomyelitis in nontransgenic mice via bystander activation of autoreactive CD4+ cells. J Immunol. 2005 Jul 15;175(2):959–966. [PubMed] [Google Scholar]

47. Srinivasan A, Salazar-Gonzalez RM, Jarcho M, Sandau MM, Lefrancois L, McSorley SJ. Innate immune activation of CD4 T cells in salmonella-infected mice is dependent on IL-18. J Immunol. 2007 May 15;178(10):6342–6349. [PubMed] [Google Scholar]

48. Yang J, Zhu H, Murphy TL, Ouyang W, Murphy KM. IL-18-stimulated GADD45 beta required in cytokine-induced, but not TCR-induced, IFN-gamma production. Nat Immunol. 2001 Feb;2(2):157–164. [PubMed] [Google Scholar]

49. Berg RE, Crossley E, Murray S, Forman J. Memory CD8+ T cells provide innate immune protection against Listeria monocytogenes in the absence of cognate antigen. J Exp Med. 2003 Nov 17;198(10):1583–1593. [PMC free article] [PubMed] [Google Scholar]

50. Marrack P, Kappler J. The staphylococcal enterotoxins and their relatives. Science. 1990 May 11;248(4956):705–711. [PubMed] [Google Scholar]

51. McCormack JE, Callahan JE, Kappler J, Marrack PC. Profound deletion of mature T cells in vivo by chronic exposure to exogenous superantigen. J Immunol. 1993 May 1;150(9):3785–3792. [PubMed] [Google Scholar]

52. Vella AT, McCormack JE, Linsley PS, Kappler JW, Marrack P. Lipopolysaccharide interferes with the induction of peripheral T cell death. Immunity. 1995 Mar;2(3):261–270. [PubMed] [Google Scholar]

53. Vella AT, Mitchell T, Groth B, Linsley PS, Green JM, Thompson CB, Kappler JW, Marrack P. CD28 engagement and proinflammatory cytokines contribute to T cell expansion and long-term survival in vivo. J Immunol. 1997 May 15;158(10):4714–4720. [PubMed] [Google Scholar]

54. Pape KA, Khoruts A, Mondino A, Jenkins MK. Inflammatory cytokines enhance the in vivo clonal expansion and differentiation of antigen-activated CD4+ T cells. J Immunol. 1997 Jul 15;159(2):591–598. [PubMed] [Google Scholar]

55. Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK. Visualizing the generation of memory CD4 T cells in the whole body. Nature. 2001 Mar 1;410(6824):101–105. [PubMed] [Google Scholar]

56. Zaitseva MB, Golding H, Betts M, Yamauchi A, Bloom ET, Butler LE, Stevan L, Golding B. Human peripheral blood CD4+ and CD8+ T cells express Th1-like cytokine mRNA and proteins following in vitro stimulation with heat-inactivated Brucella abortus. Infect Immun. 1995 Jul;63(7):2720–2728. [PMC free article] [PubMed] [Google Scholar]

57. Koch A, Knobloch J, Dammhayn C, Raidl M, Ruppert A, Hag H, Rottlaender D, Muller K, Erdmann E. Effect of bacterial endotoxin LPS on expression of INF-gamma and IL-5 in T-lymphocytes from asthmatics. Clin Immunol. 2007 Nov;125(2):194–204. [PubMed] [Google Scholar]

58. Watanabe T, Inoue T, Ochi H, Terashima M, Asano Y, Nakatani T. Lipid A directly inhibits IL-4 production by murine Th2 cells but does not inhibit IFN-gamma production by Th1 cells. Eur J Immunol. 1999 Feb;29(2):413–418. [PubMed] [Google Scholar]

59. Kuipers H, Hijdra D, De Vries VC, Hammad H, Prins JB, Coyle AJ, Hoogsteden HC, Lambrecht BN. Lipopolysaccharide-induced suppression of airway Th2 responses does not require IL-12 production by dendritic cells. J Immunol. 2003 Oct 1;171(7):3645–3654. [PubMed] [Google Scholar]

60. Eisenbarth SC, Piggott DA, Huleatt JW, Visintin I, Herrick CA, Bottomly K. Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med. 2002 Dec 16;196(12):1645–1651. [PMC free article] [PubMed] [Google Scholar]

61. Murakami D, Yamada H, Yajima T, Masuda A, Komune S, Yoshikai Y. Lipopolysaccharide inhalation exacerbates allergic airway inflammation by activating mast cells and promoting Th2 responses. Clin Exp Allergy. 2007 Mar;37(3):339–347. [PubMed] [Google Scholar]

62. Pulendran B, Kumar P, Cutler CW, Mohamadzadeh M, Van Dyke T, Banchereau J. Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. J Immunol. 2001 Nov 1;167(9):5067–5076. [PMC free article] [PubMed] [Google Scholar]

63. Jotwani R, Pulendran B, Agrawal S, Cutler CW. Human dendritic cells respond to Porphyromonas gingivalis LPS by promoting a Th2 effector response in vitro. Eur J Immunol. 2003 Nov;33(11):2980–2986. [PubMed] [Google Scholar]

64. Ogawa T, Asai Y, Hashimoto M, Takeuchi O, Kurita T, Yoshikai Y, Miyake K, Akira S. Cell activation by Porphyromonas gingivalis lipid A molecule through Toll-like receptor 4- and myeloid differentiation factor 88-dependent signaling pathway. Int Immunol. 2002 Nov;14(11):1325–1332. [PubMed] [Google Scholar]

65. Ogawa T, Asai Y, Makimura Y, Tamai R. Chemical structure and immunobiological activity of Porphyromonas gingivalis lipid A. Front Biosci. 2007;12:3795–3812. [PubMed] [Google Scholar]

66. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006 May 11;441(7090):235–238. [PubMed] [Google Scholar]

67. Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 2006 May 11;441(7090):231–234. [PubMed] [Google Scholar]

68. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006 Feb;24(2):179–189. [PubMed] [Google Scholar]

69. Schalch L, Rordorf-Adam C, Dasch JR, Jungi TW. IGG-stimulated and LPS-stimulated monocytes elaborate transforming growth factor type beta (TGF-beta) in active form. Biochem Biophys Res Commun. 1991 Jan 31;174(2):885–891. [PubMed] [Google Scholar]

70. McIntyre TM, Klinman DR, Rothman P, Lugo M, Dasch JR, Mond JJ, Snapper CM. Transforming growth factor beta 1 selectivity stimulates immunoglobulin G2b secretion by lipopolysaccharide-activated murine B cells. J Exp Med. 1993 Apr 1;177(4):1031–1037. [PMC free article] [PubMed] [Google Scholar]

71. Boche D, Cunningham C, Gauldie J, Perry VH. Transforming growth factor-beta 1-mediated neuroprotection against excitotoxic injury in vivo. J Cereb Blood Flow Metab. 2003 Oct;23(10):1174–1182. [PubMed] [Google Scholar]

72. Yoshimoto N, Togo S, Kubota T, Kamimukai N, Saito S, Nagano Y, Endo I, Sekido H, Nagashima Y, Shimada H. Role of transforming growth factor-beta1 (TGF-beta1) in endotoxin-induced hepatic failure after extensive hepatectomy in rats. J Endotoxin Res. 2005;11(1):33–39. [PubMed] [Google Scholar]

73. Srinivasan A, McSorley SJ. Pivotal advance: exposure to LPS suppresses CD4+ T cell cytokine production in Salmonella-infected mice and exacerbates murine typhoid. J Leukoc Biol. 2007 Feb;81(2):403–411. [PubMed] [Google Scholar]

74. Bryn T, Yaqub S, Mahic M, Henjum K, Aandahl EM, Tasken K. LPS-activated monocytes suppress T-cell immune responses and induce FOXP3+ T cells through a COX-2-PGE2-dependent mechanism. Int Immunol. 2008 Feb;20(2):235–245. [PubMed] [Google Scholar]

75. Lewkowicz P, Lewkowicz N, Sasiak A, Tchorzewski H. Lipopolysaccharide-activated CD4+CD25+ T regulatory cells inhibit neutrophil function and promote their apoptosis and death. J Immunol. 2006 Nov 15;177(10):7155–7163. [PubMed] [Google Scholar]

76. Caramalho I, Lopes-Carvalho T, Ostler D, Zelenay S, Haury M, Demengeot J. Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J Exp Med. 2003 Feb 17;197(4):403–411. [PMC free article] [PubMed] [Google Scholar]

77. Lau AW, Biester S, Cornall RJ, Forrester JV. Lipopolysaccharide-Activated IL-10-Secreting Dendritic Cells Suppress Experimental Autoimmune Uveoretinitis by MHCII-Dependent Activation of CD62L-Expressing Regulatory T Cells. J Immunol. 2008 Mar 15;180(6):3889–3899. [PubMed] [Google Scholar]

78. Jarnicki AG, Conroy H, Brereton C, Donnelly G, Toomey D, Walsh K, Sweeney C, Leavy O, Fletcher J, Lavelle EC, Dunne P, Mills KH. Attenuating Regulatory T Cell Induction by TLR Agonists through Inhibition of p38 MAPK Signaling in Dendritic Cells Enhances Their Efficacy as Vaccine Adjuvants and Cancer Immunotherapeutics. J Immunol. 2008 Mar 15;180(6):3797–3806. [PubMed] [Google Scholar]

79. den Haan JM, Kraal G, Bevan MJ. Cutting edge: Lipopolysaccharide induces IL-10-producing regulatory CD4+ T cells that suppress the CD8+ T cell response. J Immunol. 2007 May 1;178(9):5429–5433. [PMC free article] [PubMed] [Google Scholar]

80. Goodman MG, Weigle WO. T cell regulation of polyclonal B cell responsiveness. I. Helper effects of T cells. J Immunol. 1979 Jun;122(6):2548–2553. [PubMed] [Google Scholar]

81. McGhee JR, Farrar JJ, Michalek SM, Mergenhagen SE, Rosenstreich DL. Cellular requirements for lipopolysaccharide adjuvanticity. A role for both T lymphocytes and macrophages for in vitro responses to particulate antigens. J Exp Med. 1979 Apr 1;149(4):793–807. [PMC free article] [PubMed] [Google Scholar]

82. Weigle WO, Scheuer WV, Hobbs MV, Morgan EL, Parks DE. Modulation of the induction and circumvention of immunological tolerance to human gamma-globulin by interleukin 1. J Immunol. 1987 Apr 1;138(7):2069–2074. [PubMed] [Google Scholar]

83. Romball CG, Weigle WO. Cytokines in the induction and circumvention of peripheral tolerance. J Interferon Cytokine Res. 1999 Jun;19(6):671–678. [PubMed] [Google Scholar]

84. Liu Y, Janeway CA., Jr Microbial induction of co-stimulatory activity for CD4 T-cell growth. Int Immunol. 1991 Apr;3(4):323–332. [PubMed] [Google Scholar]

85. Mattern T, Flad HD, Brade L, Rietschel ET, Ulmer AJ. Stimulation of human T lymphocytes by LPS is MHC unrestricted, but strongly dependent on B7 interactions. J Immunol. 1998 Apr 1;160(7):3412–3418. [PubMed] [Google Scholar]

86. McAleer JP, Zammit DJ, Lefrancois L, Rossi RJ, Vella AT. The lipopolysaccharide adjuvant effect on T cells relies on nonoverlapping contributions from the MyD88 pathway and CD11c+ cells. J Immunol. 2007 Nov 15;179(10):6524–6535. [PubMed] [Google Scholar]

87. Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K, Akira S. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity. 1998 Jul;9(1):143–150. [PubMed] [Google Scholar]

88. Gelman AE, Zhang J, Choi Y, Turka LA. Toll-like receptor ligands directly promote activated CD4+ T cell survival. J Immunol. 2004 May 15;172(10):6065–6073. [PMC free article] [PubMed] [Google Scholar]

89. Maxwell JR, Yadav R, Rossi RJ, Ruby CE, Weinberg AD, Aguila HL, Vella AT. IL-18 bridges innate and adaptive immunity through IFN-gamma and the CD134 pathway. J Immunol. 2006 Jul 1;177(1):234–245. [PubMed] [Google Scholar]

90. Khoruts A, Mondino A, Pape KA, Reiner SL, Jenkins MK. A natural immunological adjuvant enhances T cell clonal expansion through a CD28-dependent, interleukin (IL)-2-independent mechanism. J Exp Med. 1998 Jan 19;187(2):225–236. [PMC free article] [PubMed] [Google Scholar]

91. Muraille E, De Trez C, Pajak B, Brait M, Urbain J, Leo O. T cell-dependent maturation of dendritic cells in response to bacterial superantigens. J Immunol. 2002 May 1;168(9):4352–4360. [PubMed] [Google Scholar]

92. Rossi RJ, Muralimohan G, Maxwell JR, Vella AT. Staphylococcal enterotoxins condition cells of the innate immune system for Toll-like receptor 4 stimulation. Int Immunol. 2004 Dec;16(12):1751–1760. [PubMed] [Google Scholar]

93. Sengupta S, Chilton PM, Mitchell TC. Adjuvant-induced survival signaling in clonally expanded T cells is associated with transient increases in pAkt levels and sustained uptake of glucose. Immunobiology. 2005;210(9):647–659. [PubMed] [Google Scholar]

94. Mitchell TC, Hildeman D, Kedl RM, Teague TK, Schaefer BC, White J, Zhu Y, Kappler J, Marrack P. Immunological adjuvants promote activated T cell survival via induction of Bcl-3. Nat Immunol. 2001 May;2(5):397–402. [PubMed] [Google Scholar]

95. Ichii H, Sakamoto A, Arima M, Hatano M, Kuroda Y, Tokuhisa T. Bcl6 is essential for the generation of long-term memory CD4+ T cells. Int Immunol. 2007 Apr;19(4):427–433. [PubMed] [Google Scholar]

96. Sengupta S, Jayaraman P, Chilton PM, Casella CR, Mitchell TC. Unrestrained glycogen synthase kinase-3 beta activity leads to activated T cell death and can be inhibited by natural adjuvant. J Immunol. 2007 May 15;178(10):6083–6091. [PubMed] [Google Scholar]

97. Reis e Sousa C, Hieny S, Scharton-Kersten T, Jankovic D, Charest H, Germain RN, Sher A. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J Exp Med. 1997 Dec 1;186(11):1819–1829. [PMC free article] [PubMed] [Google Scholar]

98. Kaisho T, Hoshino K, Iwabe T, Takeuchi O, Yasui T, Akira S. Endotoxin can induce MyD88-deficient dendritic cells to support T(h)2 cell differentiation. Int Immunol. 2002 Jul;14(7):695–700. [PubMed] [Google Scholar]

99. Skokos D, Nussenzweig MC. CD8-DCs induce IL-12-independent Th1 differentiation through Delta 4 Notch-like ligand in response to bacterial LPS. J Exp Med. 2007 Jul 9;204(7):1525–1531. [PMC free article] [PubMed] [Google Scholar]

100. Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–562. [PubMed] [Google Scholar]

101. Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science. 2003 Feb 14;299(5609):1033–1036. [PubMed] [Google Scholar]

102. Pasare C, Medzhitov R. Toll-dependent control mechanisms of CD4 T cell activation. Immunity. 2004 Nov;21(5):733–741. [PubMed] [Google Scholar]

103. Maxwell JR, Rossi RJ, McSorley SJ, Vella AT. T cell clonal conditioning: a phase occurring early after antigen presentation but before clonal expansion is impacted by Toll-like receptor stimulation. J Immunol. 2004 Jan 1;172(1):248–259. [PubMed] [Google Scholar]

104. Jabbari A, Legge KL, Harty JT. T cell conditioning explains early disappearance of the memory CD8 T cell response to infection. J Immunol. 2006 Sep 1;177(5):3012–3018. [PubMed] [Google Scholar]

105. Maxwell JR, Weinberg A, Prell RA, Vella AT. Danger and OX40 receptor signaling synergize to enhance memory T cell survival by inhibiting peripheral deletion. J Immunol. 2000 Jan 1;164(1):107–112. [PubMed] [Google Scholar]

106. Maxwell JR, Ruby C, Kerkvliet NI, Vella AT. Contrasting the roles of costimulation and the natural adjuvant lipopolysaccharide during the induction of T cell immunity. J Immunol. 2002 May 1;168(9):4372–4381. [PubMed] [Google Scholar]

107. Brocker T, Gulbranson-Judge A, Flynn S, Riedinger M, Raykundalia C, Lane P. CD4 T cell traffic control: in vivo evidence that ligation of OX40 on CD4 T cells by OX40-ligand expressed on dendritic cells leads to the accumulation of CD4 T cells in B follicles. Eur J Immunol. 1999 May;29(5):1610–1616. [PubMed] [Google Scholar]

108. Neter E, Westphal O, Luderitz O, Gorzynski EA, Eichenberger E. Studies of enterobacterial lipopolysaccharides; effects of heat and chemicals on erythrocyte-modifying, antigenic, toxic and pyrogenic properties. J Immunol. 1956 May;76(5):377–385. [PubMed] [Google Scholar]

109. Goodman GW, Sultzer BM. Mild alkaline hydrolysis of lipopolysaccharide endotoxin enhances its mitogencity for murine B cells. Infect Immun. 1977 Jul;17(1):205–214. [PMC free article] [PubMed] [Google Scholar]

110. Schenck JR, Hargie MP, Brown MS, Ebert DS, Yoo AL, McIntire FC. The enhancement of antibody formation by Escherichia coli lipopolysaccharide and detoxified derivatives. J Immunol. 1969 Jun;102(6):1411–1422. [PubMed] [Google Scholar]

111. McIntire FC, Hargie MP, Schenck JR, Finley RA, Sievert HW, Rietschel ET, Rosenstreich DL. Biologic properties of nontoxic derivatives of a lipopolysaccharide from Escherichia coli K235. J Immunol. 1976 Aug;117(2):674–678. [PubMed] [Google Scholar]

112. Takayama K, Ribi E, Cantrell JL. Isolation of a nontoxic lipid A fraction containing tumor regression activity. Cancer Res. 1981 Jul;41(7):2654–2657. [PubMed] [Google Scholar]

113. Qureshi N, Takayama K, Ribi E. Purification and structural determination of nontoxic lipid A obtained from the lipopolysaccharide of Salmonella typhimurium. J Biol Chem. 1982 Oct 10;257(19):11808–11815. [PubMed] [Google Scholar]

114. Fries LF, Gordon DM, Richards RL, Egan JE, Hollingdale MR, Gross M, Silverman C, Alving CR. Liposomal malaria vaccine in humans: a safe and potent adjuvant strategy. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):358–362. [PMC free article] [PubMed] [Google Scholar]

115. Stoute JA, Slaoui M, Heppner DG, Momin P, Kester KE, Desmons P, Wellde BT, Garcon N, Krzych U, Marchand M. A preliminary evaluation of a recombinant circ*msporozoite protein vaccine against Plasmodium falciparum malaria. RTS,S Malaria Vaccine Evaluation Group. N Engl J Med. 1997 Jan 9;336(2):86–91. [PubMed] [Google Scholar]

116. Thoelen S, Van Damme P, Mathei C, Leroux-Roels G, Desombere I, Safary A, Vandepapeliere P, Slaoui M, Meheus A. Safety and immunogenicity of a hepatitis B vaccine formulated with a novel adjuvant system. Vaccine. 1998 Apr;16(7):708–714. [PubMed] [Google Scholar]

117. Ismaili J, Rennesson J, Aksoy E, Vekemans J, Vincart B, Amraoui Z, Van Laethem F, Goldman M, Dubois PM. Monophosphoryl lipid A activates both human dendritic cells and T cells. J Immunol. 2002 Jan 15;168(2):926–932. [PubMed] [Google Scholar]

118. De Becker G, Moulin V, Pajak B, Bruck C, Francotte M, Thiriart C, Urbain J, Moser M. The adjuvant monophosphoryl lipid A increases the function of antigen-presenting cells. Int Immunol. 2000 Jun;12(6):807–815. [PubMed] [Google Scholar]

119. Thompson BS, Chilton PM, Ward JR, Evans JT, Mitchell TC. The low-toxicity versions of LPS, MPL adjuvant and RC529, are efficient adjuvants for CD4+ T cells. J Leukoc Biol. 2005 Dec;78(6):1273–1280. [PubMed] [Google Scholar]

120. Mata-Haro V, Cekic C, Martin M, Chilton PM, Casella CR, Mitchell TC. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science. 2007 Jun 15;316(5831):1628–1632. [PubMed] [Google Scholar]

121. Zughaier SM, Zimmer SM, Datta A, Carlson RW, Stephens DS. Differential induction of the toll-like receptor 4-MyD88-dependent and -independent signaling pathways by endotoxins. Infect Immun. 2005 May;73(5):2940–2950. [PMC free article] [PubMed] [Google Scholar]

122. Fedele G, Nasso M, Spensieri F, Palazzo R, Frasca L, Watanabe M, Ausiello CM. Lipopolysaccharides from Bordetella pertussis and Bordetella parapertussis differently modulate human dendritic cell functions resulting in divergent prevalence of Th17-polarized responses. J Immunol. 2008 Jul 1;181(1):208–216. [PubMed] [Google Scholar]

Understanding how lipopolysaccharide impacts CD4 T cell immunity (2024)
Top Articles
Latest Posts
Article information

Author: Edmund Hettinger DC

Last Updated:

Views: 5585

Rating: 4.8 / 5 (58 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Edmund Hettinger DC

Birthday: 1994-08-17

Address: 2033 Gerhold Pine, Port Jocelyn, VA 12101-5654

Phone: +8524399971620

Job: Central Manufacturing Supervisor

Hobby: Jogging, Metalworking, Tai chi, Shopping, Puzzles, Rock climbing, Crocheting

Introduction: My name is Edmund Hettinger DC, I am a adventurous, colorful, gifted, determined, precious, open, colorful person who loves writing and wants to share my knowledge and understanding with you.