Muscle Cell (Myocyte): Definition, Function & Structure | Biology (2023)

Muscle Cell Definition

A muscle cell, known technically as a myocyte, is a specialized animal cell which can shorten its length using a series of motor proteins specially arranged within the cell. While several associated proteins help, actin and myosin form thick and thin filaments which slide past each other to contract small units of a muscle cell. These units are called sarcomeres, and many of them run end-to-end within a larger fiber called a myofibril. A single muscle cell contains many nuclei, which are pressed against the cell membrane. A muscle cell is a long cell compared to other forms of cells, and many muscle cells connect together to form the long fibers found in muscle tissue.

Structure of a Muscle Cell

As seen in the image below, a muscle cell is a compact bundle of many myofibrils. Each myofibril is made of many sarcomeres bundled together and attached end-to-end. A specialized form of the endoplasmic reticulum, known as the sarcoplasmic reticulum, extends in and around these myofibril bundles. The sarcoplasmic reticulum (SR for short) concentrates a chemical needed for the muscle cells to contract, and is activated by signals from nerve cells. The signals travel through the transverse tubules (T tubules in the picture below) after being received from a nerve and activates the SR. Mitochondria are densely packed throughout muscle cells, to provide a constant flow of ATP. The entire cell is covered in a specialized cell membrane known as the sarcolemma. The sarcolemma has special opening which allow nerve impulses to be passed into transverse tubules.

Below is a blown up view of each sarcomere. Each sarcomere is made primarily from thick and thin filaments. Thick filaments are made from repeating units of a protein known as myosin. Myosin has small heads on it which can bind to an actin filament. Repeating units of the protein actin make up the thin filament. Actin is supported by a number of accessory proteins which give the strands stability and allow the muscle to be controlled by nerve impulses.

(Video) Muscles, Part 1 - Muscle Cells: Crash Course Anatomy & Physiology #21

The actin filaments are supported on each end by specialized proteins. The CapZ protein holds actin to the Z plate, while tropomodulin connects to the end of each actin filament. Nebulin connects CapZ to tropomodulin, providing a structural framework to hold the actin filaments rigid. Another large protein, titin, connects the Z plates together and prevents the sarcomere from being overstretched when it is not contracting. These proteins cannot be seen in the image below.

Actin is covered by two additional proteins, troponin and tropomyosin. Troponin is the small yellow ball in the image below, while tropomyosin is the thread-like protein which follows the actin filament. The myosin proteins can also be seen. The heads extend upward from a thick fiber made of many myosin tails wound together.

Function of a Muscle Cell

To activate a muscle, the brain sends an impulse down a nerve. The nerve impulse travels down the nerve cells to the neuromuscular junction, where a nerve cell meets a muscle cell. The impulse is transferred to the nerve cell and travels down specialized canals in the sarcolemma to reach the transverse tubules. The energy in the transverse tubules causes the SR to release of the Ca2+ it has built up, flooding the cytoplasm with calcium. The Ca2+ has a special effect on the proteins associated with actin.

(Video) Musculoskeletal System | Muscle Structure and Function

Troponin, when not in the presence of Ca2+, will bind to tropomyosin and cause it to cover the myosin-binding sites on the actin filament. This means that without Ca2+ the muscle cell will be relaxed. When Ca2+ is introduced into the cytosol, troponin will release tropomyosin and tropomyosin will slide out of the way. This allows the myosin heads to attach to the actin filament. Once this happens, myosin can used the energy gained from ATP to crawl along the actin filament. When many sarcomeres are doing this at the same time, the entire muscle contract.

While only a small percentage of the heads are attached at any one time, the many heads and continual use of ATP ensures a smooth contraction. The myosin crawls until it reaches the Z plate, and full contraction has been obtained. The SR is continually removing Ca2+ from the cytoplasm, and once the concentration falls below a certain level troponin rebinds to tropomyosin, and the muscle releases.

While the above model is a generalized version of what happens in skeletal muscle, similar processes control the contractions of both cardiac and smooth muscle. In cardiac muscle, the impulses are in part controlled by pacemaker cells which releases impulses regularly. Smooth muscle is different from skeletal muscle in that the actin and myosin filament are not organized in convenient bundles. While they are organized differently, smooth muscle still operates on the functioning of myosin and actin. Smooth muscle can obtain a signal to contract from many sources, including the nervous system and environmental cues the cells receive from other parts of the body.


1. Certain heart defects can be inherited genetically. Some of these defects occur because the genetic code responsible for creating actin or myosin is a mutant variation. Why would this affect the heart?
A. Actin and Myosin control contractions in the heart
B. If your muscles don’t work, your heart cannot pump enough blood to them
C. The heart needs the ATP released from myosin

(Video) Muscle Tissues and Sliding Filament Model

Answer to Question #1

A is correct. Actin and myosin control contractions in every muscle. If your genetics contain a version of these proteins which doesn’t function properly, muscle contraction in general will be difficult or impossible. Some variations of the myosin and actin genomes contain varieties that work, but not nearly as well as the normal variation. These varieties can cause the heart to try to beat harder to keep up, resulting in an irregular heartbeat and oversized heart.

2. A scientist want to see what the muscle will do without ATP. He puts a muscle cell in a petri dish, but removes all the ATP from the dish and from the cell. He then adds Ca2+ to the cytoplasm. Which of the following will happen?
A. Nothing
B. The myosin will attach to the actin
C. The muscle will contract

Answer to Question #2

B is correct. In the presence of Ca2+ the myosin will be able to bind to actin. The calcium will release the troponin and shift the tropomyosin, revealing the binding site for myosin to attach to. However, the myosin needs ATP to swing the heads and crawl along the actin filament. Without this, the myosin will bind to the actin but will not be able to move or contract the cell at all. Further, many other cell functions require ATP and the cell will surely perish.

(Video) Structure of Skeletal Muscle Explained in simple terms

3. In doing scientific exploration, scientists found that an electrical current will stimulate a muscle cell, even if the cell is not in a living animal. Why is this the case?
A. The electricity causes the proteins to bind together
B. The electricity is the same as a nervous impulse
C. The electricity mimics the calcium released during contraction

Answer to Question #3

(Video) 3. Muscle contraction detail Concept Cell Biology

B is correct. Nerve impulses are nothing more than electrical voltages being carried down the cell membrane. When a muscle cell is exposed to certain voltages of electricity, the sarcoplasmic reticulum releases Ca2+, the same as if a nervous impulse triggered the contraction.


  • Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Scott, M. P., Bretscher, A., . . . Matsudaira, P. (2008). Molecular Cell Biology 6th. ed. New York: W.H. Freeman and Company.
  • Reece, J. B., Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., & Jackson, R. B. (2014). Campbell Biology, Tenth Edition (Vol. 1). Boston: Pearson Learning Solutions.
  • staff (2014). “Medical gallery of Blausen Medical 2014”. WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436.


What is the structure and function of a muscle cell? ›

Each strand is made up of sub-units called "sarcomeres." These sarcomeres contain the "contraction proteins” called actin and myosin. The chemical interactions of these two proteins are responsible for the abilities of the muscle to contract (shorten), relax and produce force (necessary to move the body or objects).

What is the function of a myocyte cell? ›

The muscle myocyte is a cell that has differentiated for the specialized function of contraction. Although cardiac, skeletal, and smooth muscle cells share much common functionality, they do not all share identical features, anatomical structures, or mechanisms of contraction.

What type of muscle is myocytes? ›

Skeletal muscle cells

Muscle cells, commonly known as myocytes, are the cells that make up muscle tissue. There are 3 types of muscle cells in the human body; cardiac, skeletal, and smooth. Skeletal muscle cells are long, cylindrical, multi-nucleated and striated.

Is a myocyte a muscle cell? ›

Myocytes, sometimes called muscle fibers, form the bulk of muscle tissue. They are bound together by perimysium, a sheath of connective tissue, into bundles called fascicles, which are in turn bundled together to form muscle tissue. Muscles are composed of long bundles of Myocytes (Muscle fibers).

What are the 4 main functions of muscles? ›

The muscular system consists of various types of muscle that each play a crucial role in the function of the body. Muscles allow a person to move, speak, and chew. They control heartbeat, breathing, and digestion.

What is the basic structure of a muscle? ›

Each muscle is made up of groups of muscle fibers called fascicles surrounded by a connective tissue layer called perimysium. Multiple units of individual muscle fibers within each fascicle are surrounded by endomysium, a connective tissue sheath.

What is the definition of myocytes? ›

: a contractile cell. specifically : a muscle cell.

What is the function of muscle cells quizlet? ›

producing body movements, stabilizing body positions, storing and moving substances within the body, generating heat.

What is a myocyte in biology? ›

A myocyte (also known as a muscle cell) is the type of cell found in some types of muscle tissue. Myocytes develop from myoblasts to form muscles in a process known as myogenesis. There are two specialized forms of myocytes with distinct properties: cardiac, and smooth muscle cells.

What are myocytes made of? ›

The myocyte is composed of bundles of myofibrils that contain myofilaments (Figure 1). The myofibrils have distinct, repeating microanatomical units, termed sarcomeres, which represent the basic contractile units of the myocyte (Figure 2).

What do myocytes consist of? ›

Myocytes contain one or two nuclei that are centrally located and oblong. Myofibrils course around the nucleus, leaving at the nuclear poles a conical area free of contractile elements but densely packed with other cellular organelles.

What is the structure that is unique for myocytes? ›

A specialized structure of the myocyte is the sarcolemma, a coalescence of the plasma membrane proper and the basement membrane. The sarcolemma is composed of a lipid bilayer, which contains hydrophilic heads and hydrophobic tails.

Where is the myocyte? ›

A muscle cell is also known as a myocyte when referring to either a cardiac muscle cell (cardiomyocyte), or a smooth muscle cell as these are both small cells. A skeletal muscle cell is long and threadlike with many nuclei and is called a muscle fiber.

What is a muscle cell quizlet? ›

A myocyte (also known as a muscle cell or muscle fiber) is the type of cell found in muscle tissue. They are long, tubular cells that arise developmentally from myoblasts to form muscles.

Where is the muscle cell? ›

Each compartment contains a bundle of muscle fibers. Each bundle of muscle fiber is called a fasciculus and is surrounded by a layer of connective tissue called the perimysium. Within the fasciculus, each individual muscle cell, called a muscle fiber, is surrounded by connective tissue called the endomysium.

What are the 6 major muscles and their functions? ›

The six major muscle groups you want to train are the chest, back, arms, shoulders, legs, and calves. You want to train each of these muscle groups at least once every 5 to 7 days for maximum muscle gain.

What is the structure and function of three types of muscles? ›

Each type of muscle tissue in the human body has a unique structure and a specific role. Skeletal muscle moves bones and other structures. Cardiac muscle contracts the heart to pump blood. The smooth muscle tissue that forms organs like the stomach and bladder changes shape to facilitate bodily functions.

What are the 3 structure of muscles? ›

The 3 types of muscle tissue are cardiac, smooth, and skeletal.

Are myocytes cardiac muscle cells? ›

Cardiac muscle cells (cardiomyocytes) are striated, branched, contain many mitochondria, and are under involuntary control. Each myocyte contains a single, centrally located nucleus and is surrounded by a cell membrane known as the sarcolemma.

What are the two key structural features of a muscle cell? ›

The two significant proteins, actin, and myosin look in all three cell types. The complete arrangement of both of these proteins induces the striated appearance of visceral and skeletal muscle fibers.

How are myocytes different from other cells? ›

The most striking difference between muscle cells and the majority of other cells is their multinucleated nature. Depending on its size, an individual fiber may contain hundreds of nuclei. They are found just beneath the sarcolemma and seem to be randomly distributed along the length of the fiber.


1. Muscles| Simple Explanation on Types and Functions
(Cell It)
2. P2P Workshop: Identifying Risks and Interventions to Optimize Postpartum Health — Day 3
3. Muscle Structure | Biology Series
(Medicosis Perfectionalis)
4. Muscle Structures | Actin, Myosin | I band, A band, H zone, M line | Physiology Lectures
(Medicosis Perfectionalis)
5. Cardiac Muscle | Cardiovascular System Lecture 1 | Physiology | English
(Medician Lectures )
6. Structure of a Myofibril
Top Articles
Latest Posts
Article information

Author: Carlyn Walter

Last Updated: 11/07/2022

Views: 6261

Rating: 5 / 5 (70 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Carlyn Walter

Birthday: 1996-01-03

Address: Suite 452 40815 Denyse Extensions, Sengermouth, OR 42374

Phone: +8501809515404

Job: Manufacturing Technician

Hobby: Table tennis, Archery, Vacation, Metal detecting, Yo-yoing, Crocheting, Creative writing

Introduction: My name is Carlyn Walter, I am a lively, glamorous, healthy, clean, powerful, calm, combative person who loves writing and wants to share my knowledge and understanding with you.